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Cylindrically and spherically symmetric steady flows of an ideal gas are investigated. The Cauchy problem with data for ~ = 0 
is considered in the space of independent variables ~ = t/r, ~ = r. The existence and uniqueness of the analytic solution of this 
problem is proved. The Cauchy problem with initial data on different surfaces is considered in the space of the t, r variables: for 
r = 0 the zero velocity of the gas is specified, and the Hugoniot conditions are satisfied on the unknown shock wave front, which 
diverges with finite velocity from an axis or centre of symmetry. The existence and uniqueness of the analytic solution of this 
problem is also proved, and the law of motion of the diverging shock wave is determined uniquely, q~o problems on the focusing 
of a gas and on its subsequent reflection with a finite velocity of the shock wave are solved, namely, (1) the compression wave 
due to smooth motion of a piston in a gas at rest is focused, and (2) the rarefaction wave that arises when a one-dimensional 
cavity collapses is focused. The solutions of these problems represent an extension of Sedov's self-similar solutions to the case 
of two independent variables [1-3]. Moreover, the solution of the second problem extends the mathematical investigation of the 
process of one-dimensional cavity collapse [4, 5]. Copyright © 1996 Elsevier Science Ltd. 

In the class of self-similar flows, which depend on one independent variable ~. = r/t, solutions are known 
[1-3] which describe the focusing of a compression wave due to the smooth motion of a piston, in a 
uniform gas at rest, and which also describe [1] the focusing in a vacuum of a rarefaction wave with 
finite velocity. After focusing of the weak discontinuity or the free boundary, a reflected shock wave 
diverges with finite constant velocity from a centre or axis of symmetry, after which the compressed 
gas is at rest. Using the characteristic Cauchy problem [6] in a certain neighbourhood of the point 
(t = to, r = r0) r 0 > 0, the self-similar problems of a piston moving smoothly into a gas from the point 
r = r 0 [7] and the problem of the collapse of a one-dimensional cavity [4, 5] were solved. In the class 
of self-similar flows, which depend on a single variable ~ = t# k, 1 < k < 2, flows with a shock wave 
reflected from the point r = 0 were constructed in [8, 9], the velocity of these flows being variable and 
equal to infinity at the point r = 0. The existence and uniqueness of piecewise-analytic solutions in the 
problem of the reflection of a three-dimensional shock wave from a curvilinear wall and in the problem 
of the interaction o~f curvilinear shock wave fronts were proved in [10, 11]. In these two problems it is 
necessary to investigate a Cauchy problem with initial data, specified simultaneously on different surfaces 
[12-14]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M S  

We will consider a system of equations of gas dynamics [15, 16] for an ideal polytropic gas with equation 
of statep = A2(S)pV/7, wherep is the pressure, S is the entropy (henceforth we will denote the function 
A(S) by s), p is the density, and 7 = const > 1 is the polytropy index of the gas. We will investigate 
cylindrically symnaetric (v = 1) or spherically symmetric (v = 2) flows, which depend on the time t and 
the distance r = (J~l + ~ + . . .  + X2v+l) 1/2 (X1, X2, X3 are spatial coordinates). We will take U = (o, u, s) 
((I  = p "/-1)/2, and u iis the velocity of the gas) as the required functions U = U(t, r). The velocity of sound 
in the gas is then given by the relation c = as, and the system of equations of gas dynamics has the 
form 

at +UOr +-~-21O(u,. +o U ) = o  
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2 
U t + GS2ffr + UU~ + 2 G2SS, = 0 (1.1) 

y - I  y 

S t + US r = 0 

We will seek piecewise-analytic solutions of system (1.1) for the following two problem: (1) the smooth 
motion of a piston in a gas, which generates a focusing compression wave, and (2) the collapse of a 
one-dimensional cavity. The configuration of the corresponding flows in the plane of the variables t, r 
is shown in Fig. 1. 

In the first problem, at the instant t = to when 0 ~< r ~< r 0 a uniform gas is at rest and an impenetrable 
piston begins to move smoothly into it from the point A (t = to, r = r0) (the curve AB in Fig. 1 is the 
trajectory of the piston). A sound characteristic (the straight line A O  in Fig. 1) begins to propagate 
with constant velocity Co in the uniform gas at rest in the region D.0 (Co is the velocity of sound in the 
gas in the region D~). This straight line separates the region of the compression wave ~,  from the region 
at rest Do. The instant when the characteristicAO is focused is taken as t = 0. For an analytic law of 
motion of the piston in a certain neighbourhood of the pointA in the region f~:, there is a unique analytic 
solution of the problem of the piston [6, 7], which corresponds to isentropic flow. Outside this 
neighbourhood, in the region f~l, singularities of the gradient catastrophe type may occur. 

It the law of motion of the piston is chosen in a special form, the flow in the region ill, will be self- 
similar. More accurately [1-3], for the system of ordinary differential equations which describes self- 
similar flows a specific integral curve is constructed which passes through the corresponding singular 
points. A specific compression wave can thereby be chosen in the region fix. From this one can uniquely 
establish the curves AO, A B  and OC-- the  trajectory of motion of the reflected shock wave (see Fig. 
1). For these self-similar flows the trajectory OC will be a straight line, while in the region f~2 between 
the reflected shock wave OC and the r = 0 axis the compressed gas will again be at rest and is uniform. 
In the region f~l the parameters of the gas are constant along the straight lines 7~ = const, including 
t~(0, r) = const > 0, u(0, r) = const < 0. It is clear that arbitrary profiles of the gas-dynamic parameters 
are not specified by the self-similar flows U = U(Z.) at the instant t = 0 

a(0, r) = G0(r), G0(0) > 0, u(0, r) = u0(r), u0(0) < 0 

If we assume that for arbitrary o0(r), u0(0) in the region ~"~1 when t -> 0 there is a solution of system 
(1.1), the reflected shock wave OC will not be a straight line, and for the flow of gas in the region f12, 
o, u and s will not be constants. 

In the second problem (on the collapse of a one-dimensional cavity [4, 5]) at the instant t = to when 
0 ~< r ~< r0 (Fig. 1) there is a vacuum, and when r/> r0 the distributions of the gas-dynamic parameters 
are specified so that C(to, r0) > 0. The quantity S(to, r) may then also not be constant. At the instant t 
= to the wall r = r0 is instantaneously removed and when t > to leakage of the gas into the vacuum 
begins in the direction of  an axis or centre of symmetry. 

0 

to 5,? 

Fig. 1. 
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It was established in [4, 5] that in a certain neighbourhood of the point A there is a unique solution 
of the problem of ~Ihe decay of such a discontinuity, and this solution is analytic at a certain time when 
t > to. For T < 3 ill was proved that the free boundary, which separates the region of the vacuum 
from the region of the focused rarefaction wave f~l (Fig. 1), moves after a certain time with constant 
velocity equal to U(to, ro) - 2C(to, ro)/T- 1). Moreover, it was proved that when T ~< q(, = 1 + 2/(v + 1) 
the free boundary, up to the instant when focusing occurs, has this constant velocity of motion. Further, 
after the instant t = 0 the instant when the free boundary is focused at the centre or axis of symmetry 
is chosen. In Fig. IL the straight line A O  corresponds to the free boundary. 

The self-similar solutions U(~.) also describe [1] the focusing of the rarefaction wave on which the 
velocity of motion of  the free boundary is constant. The distributions of the gas-dynamic parameters 
at a fixed instant of time are special and uniquely defined by the choice of the specific self-similar flow 
U(~.). Since, in all the flows mentioned at the instant when the rarefaction wave becomes focused, the 
velocity of the gas at the point r = 0 is finite and strictly negative, we can assume that when t I> 0 the 
shock wave OC is reflected from the centre or axis of symmetry with finite velocity (Fig. 1), this will 
separate the flow in region f~l from the flow in region f~2 between OC and the r = 0 axis. In general 
the flows in t~l and ~"~2 a r e  non-isentropic. 

The purpose of this paper is as follows. Initially, starting from the arbitrary initial conditions U(0, r) 
= U0(r) 

ff(0, r) = fr0(r), fr0(0) > 0 

u(0, r) = u0(r), u0(0) < 0 

s(O, r) = so(r), s0(0) < 0 

(1.2) 

it is necessary to construct a solution of system (1.1) in the region fll and to connect it with the problem 
of the focusing of either the compression wave (the first problem) or the rarefaction wave (the second prob- 
lem). Then, in the region £12 we need to construct another solution of system (1.1) for which u(t, O) = O. 
Simultaneously with the construction of the solution in D.2 we must construct the unknown shock wave OC, 
on which the flows constructed in ~1 and required in f~2 are related by the Hugoniot relations [15, 16]. 

2. C O N S T R U C T I O N  O F  T H E  S O L U T I O N S  IN T H E  R E G I O N  f l l  

If the data (1.2) in a certain neighbourhood of the point r = 0 are analytic functions, the solution of 
the Cauchy problem (1.1), (1.2) is uniquely constructed in the form of a formal power series 

U( t , r )=  ~, Uk(r)tk 
k=o k! 

Here it can be established by induction over k that Uk(r) = Uk0(r)/: t> 1. The functions Uko(r) are analytic 
in the same nei~tbourhood of the point r = 0 as the functions U0(r) from (1.2). Consequently, the 
solution of problem (1.1), (1.2) can be represented uniquely in the form of a formal series 

U(t,r)  = ~ Uko(r) (t/r)---~k (2.1) 
k=o k! 

where U00(r) = U0(r). In order to investigate the region of convergence (and, consequently, the region 
of applicability) of  series (2.1), we make the following change of variables in (1.1) 

= t/r, X = r (2.2) 

with Jacobian J = 1/r. The  change (2.2) is degenerate when r = 0 (to investigate different features of  
the solutions of the system of equations of gas dynamics degenerate changes of variables are often 
employed--see,  for example, [4, 5, 7, 17, 18]). 

System (1.1) in 4, X variables can be written in the form 

(I-~u)f~;--~21~Ou; +X[uOx + Y-I  ] fYux +v 2 ~u = 0 
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2 ~s2($;+(l_4tt)u; 4($2SS~''I'Z y - 1  7--1 - (rs-(Yz +uttz + ~2ss z = 0  (2.3) 

(1 - 4u)s; + Xus x = 0 

If we put O/OX = 0 in (2.3), we obtain a system of ordinary differential equations equivalent to the 
corresponding system of ordinary differential equations from [1-3] and which describe self-similar flows 
which depend only on 4. 

It follows from the form of (2.2) that the instant t = 0 corresponds to the line 4 = 0 and the initial 
conditions (1.2) become the following initial conditions 

U(4, Z)l;_--o = Uo(Z) (2.4) 

Theorem 1. If U0(x) are functions that are analytic in a certain neighbourhood of the point X = 0, 
the Cauchy problem (2.3), (2.4) has the following unique analytic solution in a certain neighbourhood 
of the point Z = 0 

U(4,Z) = ~, Uk~(Z) , Uoj (Z)=Uo(Z)  (2.5) 
k=O 

Here, if s0(z) = s0(0) = const we have s(4, Z) = s0(0). 
This theorem is a corollary of the Cauchy-Kovalevskii theorem. 
In order to obtain the boundary points of the region of convergence of series (2.5) on the O4 axis, 

we will represent the solution of problem (2.3), (2.4) in the form 

Z k 
U ( ; , ~ ) =  ~_, Uk.~(4)-~-~-.t.t. (2.6) 

k=0 

Then U02(Z ) is a solution of the Cauchy problem, which is obtained if we put X = 0 in problem (2.3), 
(2.4) (problem A). 

Because of the degeneracy of conversion (2.2), system (2.3) takes the same form as when 0/~}Z = 0 
when Z = 0, i.e. the system of ordinary differential equations from problem (2.7) is equivalent to the 
system of ordinary differential equations describing [1-3] the self-similar solutions U(t, r) = U(r/t) of 
the system of equations of gas dynamics. 

In the solution of the Cauchy problem (2.7) s02(4) = s0(0) = const, while the functions o02(4), u02(4) 
in general are not written in terms of quadratures [1]. However, in this system of ordinary differential 
equations the solutions and all their features are known [1]. Also, 4 = 4. < 0 and 4 = 4" > {}---the 
boundary points of the region in which an analytic solution of problemA exists--are known. 

Here, in the case of the focusing of a compression wave the value 4 = 4. (the straight line AOo in 
Fig. 2) corresponds to the sound characteristicAO from Fig. 1: a(4*, Z) = 0. In the case of the focusing 
of a rarefaction wave the value 4 = 4. (AOo in Fig. 2) corresponds to the free boundary (AO in Fig. 1): 
0(4., Z) = 0, u(4,, ~) = const = 1/4.. 

The value 4 = 4 in both of the problems considered is greater than the value 4 = 41: 4" > 41 > 0, 
where 1/41 is the velocity of the reflected shock wave OC in the case of self-similar flows (the method 
of determining 4 = 41 is described below). 

In Figs 3 and 4 we show integral curves of problemA when v = 2 and y = 1.4 (curves 1) and v = 2 
and 7 = 3 (curves 2). 

In order to construct the remaining Uk2(4), we must differentiate problem (2.3), (2.4) successively 
with respect to Z and put Z = 0. We will thereby obtain linear systems of ordinary differential equations 

k for Uk2(4) with initial conditions Uk2(0) = ~U0(z)//)Z Iz=0- When solving these Cauchy problems all 
the UI,2(4) are uniquely defined. Series (2.6) thereby constructed is a reexpansion of series (2.5), which 
solves problem (2.3), (2.4). Since the systems of ordinary differential equations, from which Uk2(4) k 
I> 1 are determined, are linear, there are no singularities when 4" < 4 < 4" Y Ug2(4). We then prove, 
using the method described in [4, 5], that the points 4 = 4" and 4 = 4" are boundary points of the region 
of convergence of series (2.6) on the O4 axis (and consequently, of series (2.5) also). 

The solution of problemA is not constant, and it follows from this that in the space of the variables 
t, r in the region f21, the vector functions U(t, r) take different values at the point (t = 0, r = 0) on 
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different straight lines t/r = const. Hence, the problem arises of choosing the values of the gas-dynamic 
parameters at the point (t = 0, r = 0) to calculate the velocity of motion of the reflected shock wave 
at the instant t = 0. We will assume that the trajectory of the reflected shock waves (the curve OC in 
Fig..1) is given by the equation r = 9(t), and the velocity of motion of the shock wave is then D(t) = 
qJ'(t). We must choose the value of ~1 so that 1/~1 specifies the value of D(0). For the function D(t) we 
have the following relation from the Hugoniot conditions [16] 

4 u° + u° + c~ (2.7) 

when deriving which, the parameters of the gas in front of the shock wave are given the subscript zero, 
while the velocity of the gas behind the shock wave is assumed to be zero. Consequently, the required 
value of ~1 must satisfy the relation 1/~a = Y(~I), wherey(~) is the right-hand side of (2.7), in which we 
must put u02(~), oo2(~)s02(~) instead of u0 and Co, respectively. Hence, for a specified solution of problem 
A the quantities ~1 are defined uniquely. This procedure is equivalent to determining the parameters 
of the gas behind the reflected shock wave OC when constructing solutions in the regions f~a and f~2 
in the class of self-similar flows [1-3]. 

From the specified analytic r = tp(t) in the space of the variables ~, X, one can uniquely determine 
the analytic curve ~ = 91(X), passing through the point Oa (~ = ~1, X = 0) (the curve 01C in Fig. 2). 
Then the parameters of the gas in front of the shock wave r = 9(t)---the solution of problem (2.3), (2.4) 
on the curve ~ = 91(x)--are analytic functions of a single variable (of either r or t). 

3. C O N S T R U C T I O N  OF THE S O L U T I O N  IN THE R E G I O N  ~2 AND THE 
LAW OF M O T I O N  OF THE R E F L E C T E D  S H O C K  WAVE 

Using the formulae 

r = 9(TI), t=  O+'q (3.1) 
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we replace r and t by the independent variables 11, 0. The Jacobian of the conversion J = tp'(TI). Here 
the function r = tp(t) is as yet unknown and specifies the trajectory of motion of the reflected shock 
wave. Using this substitution the r = 0 axis becomes the 11 = 0 axis and the shock wave--the curve 
OC--becomes another coordinate axis 0 = 0. 

We will write the Hugoniot condition (16) on the shock wave (i.e. on the 0 = 0 axis) in the equivalent 
form for u, s, D in terms of U1 and I 

u(0, rl)10=0= u l + T + l O t S  i M--~-  0=0 

s(0,rl)10= 0 = [sj R(M)]0= o, DI0= o = (Mt~ls i + u I )10= 0 

R ( M )  = {[(1 + h ) M  2 - h][(l - h) + hM 2 ]~ }~ M -Y 

2 2 y - I  
U°° =Ull;=¢l'x=°' / = ( T ~ I )  s°°O+7°°°s '  h -  ~/+! 

Here U is the solution in the region ~"~2, U1 is the solution in the region ~')1, and the quantity M, as a 
function of ol, sl and 1, is found from the condition 

2s°° {M[(1 - h ) +  hM2 ]-~}v-l o I + ~OoosjR(M) = 1 
T - I  

By the theorem of implicit functions, the function M = M ( O l ,  $1, l) exists and is analytic in a certain 
neighbourhood of the point (Ol = Ooo, sl = S0o, l =/oo). Here the vector U °° = U(O, rl)Io=n=0 is known, 
since D(O) and U0o are known. 

We will rewrite the conditions for ul0=0 in the form 

u(0,1])10= 0 = [~l + qz (Ul,/)]0:0; ~ = const > 0, ~ql / ~/10=0,q:0 = 0 

and we will denote the right-hand sides of the relations for slo=0, DIo=0 by s* and D*, respectively. 
Instead of the unknown functions U we will introduce the following new unknown functions 

u ' = u ,  v = u - ~ J I - q l ,  z = s - s "  (3.2) 

The Hugoniot conditions are then equivalent to the relations 

U(0, rl)10_-o = 0, z(0, 11)10-o = 0, tp n = D* 

The last of these is a differential equation for determining the unknown trajectory of motion of the 
shock wave. 

For unknown functions Ix' and tp, the initial data is specified on another coordinate axis 

u'(0, ~1)1~_-o = O, ¢P(rl)lrl_--o = 0 

The first of these conditions ensures that a zero value of the velocity of the gas is obtained in the region 
f~2 on the coordinate axis r = 0, and the second specifies the initial point of motion of the reflected 
shock wave O C  (t = O, r = 0). 

In addition to the replacements (3.1) and (3.2) we apply an extension to the unknown functions IX' 
and v: u "  = elU', ~a' = E2~. Here el and e2 are any two positive constants which satisfy the condition 
E1/E 2 = 2/(1 + a) # 0, a = (~ - 1)/(I] + 1), [a [ < 1. 

We solve the first two equations of the system thereby obtained from system (1.1) for the derivatives 
u n, u o (the primes on u"  and v' are henceforth omitted). In addition, on the right-hand sides of the two 
equations obtained we convert the coefficients of uo, u~ as follows: 

F = F  0+F~; F 0=FIo2=const ,  F I = F - F  0; F 11o2 _=0  

where 0 2 is a point with coordinates 
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e}=O, r l=0 ,  u=O,  v=0,  z=0 ,  cp=0, ol=a{~,  s l=soo 

Hence, to describe the flow in the region ~"~2 while satisfying the Hugoniot conditions on the line r 
= q~(t) and the condition u = 0 on the line r = 0, we arrive at the following Cauchy problem with initial 
data, specified simultaneously on different coordinate axes 

(1 - a)D* u ( I - a ) ( l -  M02) u0 + 2M 0 on _v  - -+Or  
un = Ko K0 K 0 tp 

- a 2 ) D *  
2aM o l - a  + v ( I  u + o  2 

= U O + ~  TI u 0 K0 K0 v 2 K 0 ~p 

U 
Zo = Eluo + EzV e + E3un + E4v q + ~ Z'n + E5 

{Pn = D* 

u(0,rl)ln=0=0, <p(rl)ln=0=0, v(0,rl)10=0=0, z(0,~)10= 0 = 0 

(3.3) 

Here 

M o = D ( 0 )  / c ( r l , 0 ) l o = q =  o , 0 < M o < ! 

K o = ( l - a ) + M o ( l + a ) ,  0 < K o < 2  

¢Pi, E i (1  <~ i <~ 2, 1 <~j ~< 5) are specified functions of 0,11, u, a), q~, ~110=0, s110=0, analytic in a certain neigh- 
bourhood of the point 02, the derivatives u0, a) n occur linearly in ~i, and the coefficients of these derivatives 
are zero at the point 02. The specific form of ¢}i and Ej is not given here because of its complexity. 

There is a singularity of the form u/9  in problem (3.3). Because of the presence of this singularity, 
problem (3.3) is not subject to the theorems from [ 10-14]. However, the corresponding theorem is proved 
when developing the method proposed in [14]. 

Theorem 2. If the solution U1 of problem (2.3), (2.4) is analytic in a certain neighbourhood of the 
point (~ = ~1, X = 0), then a unique analytic solution of problem (3.3) exists in a certain neighbourhood 
of the point (t = 0, r = 0). A locally analytic law of motion of the shock wave OC-- the  curve r = ~0(t), 
on which the solutions of problem (2.3), (2.4) and problem (3.3) are related by the Hugoniot conditions, 
is also uniquely defined. 

Without going into detail, we will simply give the main features of the proof of Theorem 2. The solution 
of problem (2.3) i,~ constructed in the form of series 

- 0trl t 
U(0,rl)= E Uk t - - ,  ~0(q)= ~. q0'---L (3.4) 

~.t=O ' k ! l !  ,,=o n! 

The coefficients Ukj (k + l = n), 9n are determined as follows. Forn = 0 these coefficients are known 
from the initial conditions of problem (3.3). When n = 1 some of the coefficients are known from the 
initial conditions, 'while the remaining ones are determined by the values at the point Oz of the right- 
hand sides of the equations of problem (3.3). If the coefficients are obtained for k + 1 = 0, 1 , . . . ,  n, 
then for k + 1 = n + 1 they are determined using this procedure. First, it follows from the initial 
conditions that U0,n+l, Dn+l,0, ZO,n+ 1 are zeros. Second, we differentiate the system of equations from 
(3.3) k times with respect to rl and once with respect to 0 (k = 0, 1 , . . . ,  n; k + l = n) and we assume 
11 = 0 = 0. The result of differentiating the first two equations gives a system of linear algebraic equations 
for determining uk, t and vk, l. If they are obtained, the result of differentiating the last two equations 
of system (3.3) will serve as the relations from which Zkg, %+1 are determined explicitly. The system of 
linear equations for Ukj and Vkj has the form 

Uo.n+l = D,u k,~ + Q4~., 

U l,, = D~2.~-I + C2ut.,, + QI.,,-I 
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u k.,,+l_~ = Dk ÷rv ,+ j . ,_k  + c ,  +lu~. ,,÷l_k + Qk.,,-~, 

un_l.2 = D,p~., +C,,u~_, 2 +a,,_,.i. u,,~ =C,÷lu,,: +Q,,.o 

Un+l. 0 = An+l//n. I "F Pn.0' 

Un.I = AnUn-l.2 + Bno,.I + Pn-I . l '  

. . .  

ut+l .n- t  = Ak+lut..+l-/~ + B/~+lt/k+l,,,-k + Pk.,,-k, 

u2.n-I = A2uI.n + B ~  2,n-I + PI.,,-I, uI,,, = BIo I., + Po.,, 

(3.5) 

Here 

- M 2 ) 2M o 2 a M  o i - a 
--Ao=(l-aXI Bo= .. , C o = ~  , O o = ~  

Ko ' go Ko Ko 

v(I - a )  v(I - a  2 ) 
fo = - - ,  go = - -  

Ko 2Ko 

A n =  n ~  = n ( I - a ) ( l - M 2 o )  

n - f  o 

, B, ,= nB° = 2 n M °  

E, ~-fo E~ 

= 2naM o + v ( i - a ) ( l + a -  M o + a M o ) 1 2  

e,, 

= (I - a ) ( n  - v )  
, E n = n K o + V ( I - a )  

e,, 

Aogo c.  =Co+ 
n - f  o 

Bogo o~ =Do+ 
n - fo 

where Pt~ and Qk~ depend on U~, 9k+l when k + l ~< n. 
The following inequalities hold 

D(0)>0,  fo<O, Co<l ,  y2>4¢to (Bo+l lo - l~o)2>ao  >0  

o<n , ,< l .  O-g,)O-C~)>a,,D,,>O>-B.O-C~) neN 

(ao=AoDo, [ 3 o = C o B o ,  Yo = l + a  o - 1 3  o)  

(3.6) 

Satisfaction of inequalities (3.6) for n = 0, 1, 2 , . . .  ensures that the determinant An of system (3.5) 
is non-zero. It is found from the recurrent relations 

A o = 1. 50 = 0 ,  ~n = I+A,~D,,B,-t~,,-I/(B~A,,-t) 
A,, = l - C,,+~B,,8,, 

The solution of system (3.5) has the form 

Un.I ~- Yn+l.0 

. . . , =  . . . .  . . . .  . 

i=~+tL~,i=k+l j - I  ) 

Un+l.O = ~n+l.O 

Uk.n+l_ k =nkAkVk.n+l_  k -6~k.n+l_k. k = n  . . . . .  1 

k = n - I, .... 0 

Here 

~l,n -'= Po,n 
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w.,, = Qo., 1 Ao 
Wf+l,,,.-k = (Ck+,&,,,+,-k +Qk ,,,- k )I Am, k = k....tj 

The convergence of series (3.4) is proved by the majorant method. 
The satisfaction of inequalities (3.6) ensures the existence of constants MI, Mz, and q*, which satisfy 

the inequalities 
M,al, A4,*1, O<q*<I 

As a consequence of this, the Cauchy problem 

w,* = &[I -(t+2V+ w” +z*)./pl-’ 

(/; = [(t+ 2u’ + w* + z*)4(/: + IlW” 

(3.7) 

u*m= w+(o)=z*(o)=o, p,M, ro 

majorizes the solution of problem (3.3). Here U* majorizes u, II (U* B u, u); w* 9 cp; Z* + z; t = 8 
+ rl* 

By writing the differential system from problem (3.7) in normal form we obtain that the right-hand 
sides of this system will be analytic functions which majorize zero and, consequently, for problem (3.7) 
the Cauchy-Kovalevskii theorem holds. Hence, problem (3.7) has an analytic solution which majorizes 
series (3.4). This ooncludes the proof of Theorem 2. 

Hence, the successive solution of problem (2.3) (2.4) and problem (3.3) describes the piecewise- 
analytic solution of the two problems considered on the focusing of a gas and the subsequent reflection 
of a shock wave with finite velocity from an axis or centre of symmetry. 

Note. 1. Theorems 1 and 2 also hold for the case of a normal gas [ 15, 161 with an analytic equation of state. 
2. If in problem (2.3), (2.4) the initial data are such that os(0) = 0, this leads to the occurrence of an additional 

singularity in problem (3.3). We have not investigated this case here. 
3. Problem (2.3), 1c2.4) and problem (3.3), and also the methods described above for solving them can be used 

to devise numerical methods of constructing the corresponding gas flows. 
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